Nuxeo CPS: an open source framework for the development of enterprise
content management and collaboration applications

Julien Anguenot, Stéfane Fermigier,

Florent Guillaume, Lennart Regebro, Tarek Ziadé

Nuxeo, France
{ja,sf,fg,Ir,tz} @nuxeo.com

Abstract — Nuxeo CPS (version 3) is an open source,
GPL-licensed, framework designed for building content
management, collaboration and business processing
applications. It addresses the needs of web applications
developers to easily create rich document types, with
workflow-based access control, portal-like interfaces for
accessing documents and information, and rich services
that match the features of best of breed non-free
(proprietary) offerings in the domain, including: single-
sourcing, versioning, indexing, metadata management,
localization and translation, subscriptions, notifications,
commenting, theming (user interface customization),
directories management (users and groups directories
for instance) that can be external (LDAP, SQL, etc...),
content scheduling and staging, syndication... Higher
level components, including mail, calendaring and
discussion applications, have been developed on top of
the base framework, as well as custom business
applications featuring complex document types and
workflows.

CPS3 has been developed by Nuxeo SAS, an innovative
French company specialized in open source software
and services, and a community of contributors, since
2003, and is now in use for majors projects in the
Administration, in France and other countries, and in
several multinational corporations. It is based on, and
extends in substantial ways, the Zope application server
and its Content Management Framework.

I. CPS3 PROJECT MOTIVATION

Zope is an innovative application server started in
1996 and fully open sourced under the ZPL in 1998 by
Zope Corporation, an American company. Zope pro
vides an object database, an application server with an
object broker that converts HTTP (or other protocols)
requests to objects and methods invocation, a security
model, a templating and a scripting language, a basic
component model for extending the application via
dedicated plugins also called “Products”, etc. [ZB].

The Content Management Framework (CMF)
[CMF], released by Zope Corp. in 2001, provides a
component architecture and some basic services to
write web content management applications: member
ship services, indexing, document types, and a power
ful document-centric workflow engine called DCWork
flow (which was release after the CMF was released,
and was first an add-on to the CMF before being inte
grated into it).

Nuxeo had worked on several customers projects in

Jean-Marc Orliaguet
Chalmers University of Technology
Goteborg, Sweden
jmo@ita.chalmers.se

2001 and 2002 using the CMF and some basic exten
sions, but it appeared quickly that only simple content
management — mostly web publishing applications —
but no truly collaborative applications with thousands
of users, could be created with the CMF and basic ex
tensions, and that some major extensions, refactor
ings, and new model implementation were needed to
compete, in terms both of functional scope and perfor
mance under heavy load, in the so-called “ECM” (En
terprise Content Management) and collaboration ap
plications markets dominated by proprietary software
companies like Documentum, OpenText and Interwo
ven.

The CPS3 project was thus launched in 2003 to ad
dress these goals, after the company had restructured
itself with a R&D department, and considerable re
sources have been devoted to develop the new frame
work. First customers projects developed on top of
CPS3 were in production by the end of 2003, and sta
ble releases of the software have been issued regularly
since 2004, drastically improving the framework.

II. EVENT-DRIVEN FRAMEWORK

In an enterprise content-management system
(ECMS), many components have to be tied together to
provide a high level of functionality. Some of the com
ponents are native to the framework, and some are
added later as optional modules.

Many of these components have to cooperate with
each other to provide their intended functionality. A
simple example would be a workflow component and
a mail notification component that have to work to
gether to send an email to some selected users when a
document changes state in the workflow (for instance,
upon creation of a new document or publication).

Whereas the existing Zope ECMS [CMF, Plone] use
explicit knowledge by each component of the other
components that may interact with them, CPS chose
an event-driven framework for these interactions. In
the example above, the workflow component would
send an event when the document changes state, and
the mail notification component would listen to that
event, and dispatch a mail according to the policy con
figured for it.

This provides a greater flexibility to the developer
and to the integrator. The developer can choose to
send an event whenever his module does a significant

action, but without having direct knowledge of what
other modules may or may not act on this event. He
can also choose to register his module as a listener for
some kind of events, and decide what has to be done
when an event is received. The integrator can choose
what modules she installs, and knows they'll work to
gether if it makes sense for them. Furthermore, the
policy of the interaction (to whom the mail should be
sent, in our example) can be clearly specified in the
configuration of the listener.

ITII. REPOSITORY AND PROXIES

Zope's object database (ZODB) lends itself naturally
to hierarchical object structures, and this is how most
ECMS are implemented in Zope and CMF, including
earlier versions of CPS. The object orientation and the
orthogonal persistence of the ZODB leads to a rapid
development process, removes many of the troubles
you get when using relational databases, and is more
natural for document databases and document repre
sentation. But relational databases facilitate multiple
orthogonal views on data in a way that hierarchical
object databases don't.

In CPS, unlike the classical approach outlined by the
default component Zope CMF, documents are stored
in a central repository (see [BER] and [JCR] for back
ground information about repositories) and “proxies”
pointing to the documents are spread throughout the
website structure. The user only sees proxies, and for
her they look like normal documents, but the proxies
are just a kind of pointer, a link to the real informa
tion. In the repository, documents are stored with an
additional version number.

Because the proxies have additional metadata, a
number of advanced use cases can be fulfilled:

« Multi-publication: A single document can be
published in different parts of the site. This is
because a document can be pointed to by
several unrelated proxies.

» Versioning, check-in/checkout: Documents can
be present in several different versions in the
repository, and a proxy can point to a specific
version, so different proxies can point to
different versions of a single document. This
makes it possible to have a “validated” version
somewhere, and a “working” version somewhere
else; documents don't need to be removed from
publication while they are edited. The
versioning model chosen by the default CPS
implementation is based on a simplified version
of WebDAV's DeltaV protocol [DeltaV].

« Multilinguism: A proxy can point to several
documents, the one actually displayed being
chosen according to the wuser's preferred
language.

» Multiple workflow states: Because the proxy
objects are the ones that follow the workflow, it
is possible to have the same version of a
document be published in some part of the site

and still be pending in another part where the
local reviewer has not had time to do his work.
It is achieved by applying a different workflow
on each proxy object representing the needed
process in the context of the proxy object.

« Multiple storages: Because the repository is the
central point of access for storage, it is possible
to implement and plug different storages on the
repository to store data into other databases like
XML or SQL databases or even plain file system.
The repository service unifies all these backends
and provides a single view of the storage space
(this feature is commonly use to set up one
different database per year, for example).

 DPlaceful security: Only the proxy objects are
aware about the security that is applied to them
according to the context. (i.e : parent folder)
and controlled by the workflow applied on it in
a placeful manner.

All these advanced features come nearly for free
once you implement a proper indirection, the proxies,
between the hierarchical tree and the data.

IV. DOCUMENT TYPES

A. Schemas, widgets and layouts

Document types are created in CPS using the ab
straction of schemas and layouts.

A schema describes the structure of a document as a
set of typed fields. It is its semantic. The fields may be
strings, integers, lists of strings, files, or any arbitrary
complex data type. A default set of fields is provided.

A layout specifies how a schema is to be rendered
and edited, using a list of widgets that each specify the
user interface and display constraints for one or more
fields. New field and widget types can easily be added
by the programmers using dedicated registries.

The “layout” abstraction is important, because then
a field is not tied to a specific widget for its display.
This allows changes to the View or Controller (in the
MVC paradigm) completely independently of the
Model. Different layouts can be used for the same
schema depending on the circumstances, which makes
it possible to have different “edit” and “view” pages,
or have several “view” pages that display a subset of
all the information available in the document - this is
typically used for the Dublin Core part of the metada
ta for instance.

Schemas and layouts are a fundamental innovation
in CPS3, in that they allow the quick development or
the customization of rich document types. They are
now the foundation for most of the CPS user interface,
including directories and portlets (see below).

Although schemas are not a new concept in ECMS,
CPS3 provided the first schema system for Zope where
schemas were stored in the object database. This en
abled us to create CPSTypeMaker, an innovative tool
used to automatically create and modify document
types on the portal. It provides a complete WYSIWYG

editor that generates and edits CPS schemas and lay
outs definitions used by CPSDocument to create in
stances of a given type. This editor brings CPS's pow
erful document development to a higher lever, making
it usable by non-developers that wish to easily extend
or create document types on the portal as well as en
abling rapid-prototyping. Furthermore, the definitions
generated by the tool are more reliable and less bug-
prone than human-made definitions.

B. Flexible documents

In addition to obeying a schema and a layout ac
cording to their type, documents can have a “flexible”
part that can be changed dynamically by the user. The
user is able to manipulate a given instance of a docu
ment and add new fields and widgets to it. Using this,
the user changes the schema of his document easily,
for instance by adding several images or different text
zones, and he can also change the way a given field is
displayed, by changing the configuration of the widget
associated to it, or by changing the widget completely.

Not all sites want this flexibility of course, and this
behavior can be turned on and off per document type,
and, inside a document type, per schema.

These flexible documents types (and actually all
document types based on schemas and layouts) are
CMF content types based on CPS's “Flexible Type In
formation”. This object describes for a given content
type what schemas to use, what layouts, which of
them are flexible, and additional information like
“clusters” that help in having several different views
for a single document (main page, metadata page,
short view, etc.).

C. Vocabularies

Vocabularies store a correspondence between keys
and a human-readable label. They can be ordered,
and may get their data from an external source or be
computed. A central repository of vocabularies is pro
vided by CPS and users can control it through the CPS
user interface. Local vocabularies are available as well
to provide placeful restricted vocabularies to granted
principals. They are typically used with widgets within
the forms.

D. Data Structure / Data Model

When interacting with documents defined through
schemas, several abstractions are used. The data as it
is seen by the user, and the data as it is manipulated
by the code, use different abstractions.

A DataStructure holds the user-oriented version of
the data, designed to be displayed, either computed
from the real data before display or returned by the
browser from input fields.

The DataModel is a transient object that holds infor
mation about a particular document's data structure in
the native format for that data. For instance, in the

DataModel, an integer is really represented as a
python integer, whereas the corresponding DataStruc
ture, designed for display, holds a string representa
tion of it. The DataModel also includes the underlying
schemas and the storage options. It acts as a single
point of access to the document structure. It is the one
responsible for validating access to the data according
to right restrictions (ACLs) specified on the fields. It
could also be used as a cache of the document's data.

The actual storage into objects from the DataModel,
or the extraction of data from an object is performed
by a storage adapter.

E. Storage adapters

A storage adapter is used by a DataModel to get/set
the data from/to somewhere. It is is parameterized on
one hand by some context, for instance an object, and
on the other hand by the schema that drives it.

A storage adapter can also be linked to no object,
for instance for during object creation.

The most basic implementation (AttributeStor
ageAdapter) is simply using attributes on an object. A
variation on it (MetadataStorageAdapter) has knowl
edge of the Dublin Core API of the CMF, and uses ac
cessors so that the “title” field is not directly stored in
the “title” attribute but is get/set using the Title() and
setTitle() methods.

More complex storage adapters, used in directories
for instance, store data in an SQL table, or in LDAP.

V. DIRECTORIES

A. The directory abstraction

It has been recognized early in the development of
CPS that not all data manipulated by an ECMS can be
considered as a “document” from the user or infras
tructure's point of view. For instance, this is the case
for the information about the users themselves, the
way they are organized into groups. These “non-docu
ment” data have several common features:

- they are not workflowed or versioned,

+ they are stored in an external storage (LDAP,
SQL),

- they have to be searched efficiently,

« they still obey a clear schema.

The “directory” abstraction of CPS covers these use
cases. A directory contains entries that obey a schema
and are displayed using a layout, thus reusing all the
framework described above for documents (indeed,
when displayed and edited by a user, there may be no
difference at all between a document and a directory
entry).

In CPS, typical directories include:

« members

.+ groups

 roles

B. Directory backends

A number of backends have been written to cover
the common use cases of data storage or data aggre
gation for directories.

The standard data storage methods are:

« ZODB storage (inside a BTree)

+ LDAP storage

+ SQL storage

Additional backends provide “meta-directories”,
which can aggregate different underlying directories
and make them appear as a new one. CPS provides
two of these:

« Meta Directory

« Stacking Directory

The Meta Directory builds each of its entries by tak
ing some fields from some underlying directory. For
instance, the name and password fields from an entry
can come from an LDAP backend, while the login time
can come from a ZODB backend.

The Stacking Directory does a union of all the un
derlying directories, so that you can have for instance
members coming from LDAP and members coming
from an SQL table appear inside a single homogenous
directory.

C. User management

Using the directory abstraction, it becomes much
easier to manage users because the directories expose
a single unified API. The standard user management
components (called “user folders” in Zope) can be re
placed by a simple one that specifies which directory
to use to store users, and how to identify and authen
ticate them. This is the role of CPSUserFolder.

Using meta-directories, an arbitrary number of user
sources can be aggregated and used seamlessly by the
rest of the framework. This makes it possible to adapt
to complex organization's needs. For instance some of
the users may come from a read-only corporate LDAP
directory, with their last login date and picture stored
in an associated directory in the ZODB, and some oth
er users may be stored in several SQL tables on differ
ent servers.

CPSUserFolder can also take over the role of CMF's
MembershipTool and MemberDataTool, by delegating
all their functions to directories.

D. Vocabularies and directories

The vocabularies objects used by some widgets can
be interfaced to directories, using the DirectoryVocab
ulary.

This type of vocabulary specifies which directory it
refers to. The directory in turn has the specification of
what field to use as primary key (id), and what field
to use as user-visible representation (title). Using this,
the vocabulary can synthesize something that can be
used in a menu or a list of checkboxes.

This bridging is very useful to provide access to
standardized table-like data like list of physical items
whose full definition is stored in a directory.

VI. WORKFLOW-DRIVEN MODEL

Most of CPS behavior related to documents, securi
ty, users is workflow-driven. CPSWorkflow [TCH] ex
tends heavily the basic document-based DCWorkflow
by providing:

« local workflow configurations (documents may
follow different workflows depending on where
they are located in the website's arborescent
structure) see the proxy and repository section
in this document,

- specific workflow behaviours (transition flags)

that address the needs of multi-publishing,
versioning, grouping related document in the
same workflow, etc.
Logic is hooked on the transitions coping with
specific logic rules defined by the user or still
possible actions allowed to the user in a given
context, etc... Here, this is specific business logic
that is implemented.

- state behaviours protecting the object following
the workflow since all the transition are shared
in between the states. (Used only in the
workflow stack transition flags.)

- “stack” workflows that can be used for dynamic
workflow chain allocation that will take care of
dynamic local role distribution to principals
according to the policy of the stack definition
associated to the stack object.

The workflow stacks are the latest and most com
plex of these extensions. A stack provides dynamic be
havior (in the sense that they can be different for doc
uments following the same workflow) of who is al
lowed to work on a document, and along what rules.
A typical use case is when, during the validation of a
document, the reviewer decides that he has to post
pone his decision until the document has been ap
proved by specific users. The reviewer then adds the
users to a stack; these users can validate or not the
document and when the stack is empty the document
returns to the reviewer for his final decision.

Note that while the term “stack” is used to describe
them, these objects can actually implement any data
policy they want. They could be simple sets, or associ
ated to more complex algorithms.

Several stacks associated to several stack definitions
can be associated to a given workflow and thus to a
given object. The worklow tool knows about their ex
istences and how to synthesize the permissions / roles
maps provided by these stacks. It knows as well how
to perform diff through the process.

As well, the stack object are under versionning with
in the workflow history associated to an object so that
we can track the changes of the stack themselves them
during the process.

With the stack workflow extension it gives to CPS
an hybrid workflow model extending the basic docu
ment centric model provided by DCWorkflow. It
keeps the use of the workflow really straight forward
for the users and the developers but still provides

powerful and dynamic smart data structures hooked
on the workflow that allows the possibility of having
dynamic work items on a given state with a user de
fined policy for following a transition, changing state,
etc... It can be object such as tasks for instance. Reg
istries are available to extend the basic set of work
flow stack elements to allow the user to implement
and hook its own business logic on its custom work
flows.

Moreover, the transition flags can be seen as activi
ties embedding business logic controlled by the transi
tions.

VII. USER INTERFACE

A. CPSSkins

CPS was first developed with a portal user interface
based on “boxes”: graphical elements of information
that either the webmaster, the users locally responsi
ble for content management, or registered end-users,
can use to customize the content and presentation of
information displayed for themselves or for other
users of the portal.

CPSSkins [CPSSkins] was developed at Chalmers
University of Technology, then integrated in CPS, to
address the shortcomings of the “boxes” interface.
CPSSkins features:

« a WYSIWYG interface for editing the global look
of a site, also called a “theme”; an arbitrary
number of themes can be created and used for a
site,

» a visual editor with drag and drop facility for
moving information boxes, or “templets”,
around the page, and reconfiguring them,

« a user interface for managing “portlets”. This
gives users that are not site managers the
possibility to add visual content to pages while
preserving the overall site design.

Using CPSSkins, a site can have its look drastically
altered in a matter of minutes, either in totality or in
selected sub-sites. This caters for the need of complex
enterprise websites where different organizational
units need different user experiences. This also makes
it possible to build and distribute CPS Business Tem
plates that allow dramatical changes to the user inter
face to fit business needs (for instance a public web
site's backoffice should look different than an online
community).

B. CPS Portlets

CPS portlets are CPSDocument-based objects imple
menting the concepts defined within the JSR 168. The
portlets are then using the same concepts as docu
ments and directories. (i.e : schemas / layouts / wid
gets / vocabularies). Schema, layouts, widgets and vo
cabularies can thus be shared in between documents ,
directories and portlets.

CPS portlets are managed by the WYSIWYG inter

face provided by CPSSkins and CPS3 provides a set of
default portlets such as navigation, RSS, etc...

CPS portlets provides an integrated RAM cache
manager that enhances the page rendering time when
the portal has to scale. The cache invalidation system
relies on the event service system of CPS3. It can easi
ly react on user event such as modification or docu
ment creations, etc.

Note, the pages are never loaded entirely with this
system avoiding a lot of useless load on the applica
tion server. (the system is in clear opposition with the
old main _template / macros system that is not suit
able with the Zope application server. Zope is not
PHP)

C. Subscriptions and notifications

Within CPS3, content is driven by several workflows
and handled by different actors depending on their
rights at a certain time and in a given context. The
workflow schemas within large scaled organizations
can also be extremely complex. It seems to be quite vi
tal for portal actors to be informed when they have to
do something (validating, publishing, transmitting,
etc.) without having to lookup on the portal to find
what they need to do.

CPS provides placeful subscriptions controlled by
the users granted with manager rights at a given
place. It can subscribe people according to their roles
or let them subscribe themselves through dedicated
actions and interfaces. The user is notified by mail
when an event occurred for which the user has sub
scribed. (or because he has the corresponding roles
necessary to receive the notification that the manager
set)

The default notification mode is real time. The user
will receive a message directly after the event oc
curred. It is possible to subscribe in a daily, weekly or
monthly basis. Here, in this case the message notifica
tions are archived and then scheduled by an external
service such as cron under *NIX.

Recipients rules objects take care of computing the
recipients based on roles, workflow or they are explic
it ones (when the user is subscribing). It is possible to
write computed recipient rules where the user is free
to implement whatever logic he wants to define recipi
ents for a given notification within a given context.

A central management tool is provided to the site
administrator in ZMI to add events in contexts,
change notification event messages.

The notification blackened can be extended for
SMS, Jabber or whatever kind of notification by de
sign.

VIII. CPSMAILACCESS AND CPSSHAREDCALENDAR

A. Five use in CPS

To provide a flexible way to migrate CPS to the new
Zope version (Zope 3), new products are being devel

oped based on Five, which is a framework that allows
you to create Zope 3 products that can be used within
Zope 2.

The binding is not complete, so there are still some
Zope 2 specific parts. But the gap between a Product
using Five and a Zope 3 is much smaller than the gap
between a pure Zope 2 product and a Zope 3 product.
This is mostly due to the fact that Zope 3 products are
architectured in a totally different way.

At this time, there are two CPS products that are
based on Five. And CPS will have more and more of
these Five based product, until the gap between CPS 3
and a product fully based on Zope 3 is minimal.

B. CPSMailAccess

CPSMailAccess is a full-featured webmail that cre
ates a folder tree containing mail stubs on the Zope
side. A mail stub is an object that just gathers minimal
information about a mail, like its unique id and head
ers, to fullfill 90% of client manipulations. Further
more, it indexes all mails for fast Zope-side searches.
The tool keeps a list of stateful connections to the mail
server to minimize network access.

This architecture lets the user synchronize his mail
box by comparing the Zope-side tree to the mail serv
er mail tree. The interface to send mails is based on
AJAX principles and lets the user work as if it was us
ing a heavy client. For example, validations on the re
cipients emails are done on server side through an
asynchronous javascript connector, thus avoiding a
full page reload. The ergonomic is also enhanced by
letting the user drag and drop mails and folders.

C. CPSSharedCalendar

CPSSharedCalendar is an advanced, flexible calen
daring component. It allows CPS users to access per
sonal calendars using a web interface. Events on the
calendar can be shared between multiple users, and a
user can invite others, which makes the event appear
on the other's calendar.

Features of the component include a web-interface
for managing calendars, integration with iCalendar
clients (Apple iCal, Mozilla Sunbird, KOrganizer) us
ing iCalendar, invitation workflow, meeting support,
meeting helper that looks for free time, and much
more. See the features list and the use cases for more
information.

IX. DEVELOPMENT PROCESS

CPS is developed using an agile, “test-driven” ap
proach. When new coded is added, unit tests or func
tional tests are added at the same time to ensure qual
ity and non-regression [BEC, HOL]. When a bug is iso
lated, a test is written for it so that in the future no re
gression can happen. Periodical automated processes
run the whole test set and report any problem. Load
testing is also carried out on preproduction websistes.

Nuxeo joined in 2004 the EDOS European project
[EDOS] to further enhance its tools used to manage
the quality and address the complexity of the project
which currently comprises 30 packages for its “base”
version, 45 packages for its “full” release (all the pack
ages that are currently supported by the core develop
ment team) and a dozen additional packages (pack
ages under development by the CPS core team, or de
veloped by independent parties).

CPS is originally a project of Nuxeo but it is open
source and has been extended by third-party develop
ers. The very innovative CPSSkins project, for in
stance, was started independently before being
merged during the CPS 3.3 development cycle. Trans
lations in languages other that French and English are
also contributed by third parties.

Development “sprints” (multi-days sessions of fo
cused and intense development, a concept loosely
based on Extreme Programming and other agile
methodologies) have been organized to foster collabo
ration between Nuxeo and third-party developers.

Moreover, to ease collaboration with other parties,
a community website [CPO], several mailing lists and
a bugtracking system are online and publicly avail
able.

X. APPLICATIONS AND ADOPTION

CPS has been used by Nuxeo, by major IT compa
nies in France and Europe, and directly by developers
that download the freely distributed framework, for
projects such as:

- major Internet websites for French ministries
(Ministry of Interior' and Ministry of Defense?),
local administrations (city of Lyon® region of
Brittany) and public-sector organizations
(French Institute of Statutory Auditors®),

- major intranets for French and foreign
ministries (Senegal Government, French
ministries of Culture and Interior),

« collaborative applications for major companies
(Groupe Suez, STMicroelectronics, Central Bank
of West-African States),

- paper and electronic mail and files management
application for the French ministries of Interior
and Justice

- civil-state management for the city of
Antananarivo and other cities in Madagascar,

- all the web sites of the Chalmers University of
Technology® in Géteborg, Sweden.

In most of these projects, the fact that CPS is open
source has been a major criterion for its selection by
the customers, who value the higher adaptability of
the software, the long-term strategic independence it
guarantees, the benefits brought by mutualization be

thttp://www.interieur.gouv.fr/
2http://www.defense.gouv.fr/
http://www.lyon.fr/
“http://www.cncc.fr/
Shttp://www.chalmers.se/

http://www.interieur.gouv.fr/
http://www.chalmers.se/
http://www.cncc.fr/
http://www.lyon.fr/
http://www.defense.gouv.fr/

tween similar projects carried out for different cus
tomers or by different users, and the lower price when
the application has to scale to tens of instances and/or
tens of thousands of users.

Thanks to the efficiency of the Open Source devel
opment and mutualisation models, and the technical
excellence of the Zope framework, CPS has been com
pared favorably by customers and industry analysts
against the market leading proprietary solutions.

XI. FUTURE WORK

A. Evolution CPS 3.4 and beyond

CPS 3 has still a number of planned improvements
to its framwork, that will appear in CPS 3.4 or later
Zope 2-based releases. Among them are:

+ Use of CMFSetup for full XML input/ouput of the

site configuration and of the content

« Speed improvements by optimizing the security

mechanisms used by the proxies

« Use PAS for authentication with directory plugins

for storage.

« Five

« Scalability: we want CPS to scale to hundreds of
thousands of users and terabytes of document
storage.

B. Refactoring to Zope 3

Zope is currently undergoing a transition from the
now classical Zope 2 to the very innovative, fully com
ponent-based Zope 3 [RIC, WEI]. But although archi
tecturally superior to Zope 2, Zope 3 currently lacks
the content management facilities provided by the
CMF.

Work has been started in mid-2004 at Nuxeo and
other companies to gradually migrate the functionali
ties of the CMF and CPS3 to the Zope3 framework.
This migration is to be understood as a complete
rearchitecturing, and not a simple port, but upwards
compatibility with the existing CPS 3 instances is to be
taken into account during the development.

To ensure the wide adoption of the new underlining
framework, and to benefit from all the brainpower of
the Zope ECM and Zope 3 developers communities,
Nuxeo has started a worldwide collaboration with
other companies and individual developers by setting
up a collaborative website [Z3lab] and a mailing list
and organizing or participating in sprints dedicated to
the Zope 3 ECM project.

It is expected that a fully Zope 3-based version of
CPS (tentatively called CPS4) will be available in pro
totype form by the middle of 2006.

XII. RELATED WORKS

Plone [Plone] is another content management based
on Zope and the CMF. Plone doesn't use the reposito
ry/proxies model of CPS which makes developing ver
sion-controlled application harder than with CPS.
Plone, as of version 2.0, uses Archetypes, a framework
for creating content types similar to
CPSSchemas/CPSDocument, but Archetypes is mostly
based on code generation or global schemas, whereas
CPS has placeful (local) schemas that can easily be
customized by the administrator in the ZMI (placeful
schemas also allow per-document schemas, embodied
in CPS as flexible documents).

Silva [Silva] is a content management based on
Zope (without the CMF) and with a strong emphasis
on collaborative XML documents production.

The CPS event system is based on ideas borrowed
from Zope 3. The main difference is that in CPS events
are sent to a placeful event service, when in Zope 3
they are sent to a global one, but the difference is not
crucial as one can emulate the other.

CPSUserFolder is a big simplification of the user
folder framework, because it delegates actual storage
to other frameworks, and concentrates on user au
thentication. Zope 2's Pluggable Authentication Ser
vice (PAS) (or Zope 3's equivalent) provides this kind
of abstraction, but CPSUserFolder benefits from the
power of directories. However it only deals with stor
age, not authentication; in the future the two will be
bridged.

We don't know of any system equivalent to
CPSSkins.

XIII. REFERENCES

[BEC] K. Beck, “Test Driven Development: by Exam
ple”, Addison-Wesley Professional, 2002.

[BER] Philip A. Bernstein, "Repositories and Object-
Oriented Databases," ACM SIGMOD Record, vol.
27, no. 1, march 1998 (http://www.sigmod -
.org/record/issues/9803/bernstein.ps)

[CMF] http://www.zope.org/Products/CMF/

[CPO] http://www.cps- project.org/

[CPSSkins]
http://www.medic.chalmers.se/~jmo/CPS/

[DeltaV] http://www.webdav.org/deltav/

[EDOS] S. Abiteboul, X. Leroy, B. Vroldjak, C. Brice,
R. Di Cosmo, S. Fermigier, T. Milo, A. Sagi, Y.
Shtossel, S. Lauriére, F. Lepied, R. Pop, F. Villard,
E. Panto, J.-P. Smets, “EDOS: Environment for
the Development and Distribution of Open Source
Software,” to appear in 0SS2005, Genova.

[HOL] S. Holek, “Unit Testing Zope for Fun and Prof

it”, EuroPython 2002,
http://www.zope.org/Members/shh/UnitTes
tingZope. pdf

[JCR] The Java Content Repository, JCR-170,

http://jcp.org/en/jsr/detail?id=170

[Plone] http://www.plone.org/

[RIC] S. Richter, “The Zope 3 Developer's Handbook”,
New Riders, 2005.

http://www.plone.org/
http://jcp.org/en/jsr/detail?id=170
http://www.zope.org/Members/shh/UnitTestingZope.pdf
http://www.zope.org/Members/shh/UnitTestingZope.pdf
http://www.webdav.org/deltav/
http://www.medic.chalmers.se/~jmo/CPS/
http://www.cps-project.org/
http://www.zope.org/Products/CMF/
http://www.sigmod.org/record/issues/9803/bernstein.ps
http://www.sigmod.org/record/issues/9803/bernstein.ps

[Silva] http://www.infrae.com/products/silva

[TCH] A. Tchertchian, “CPSWorkflow: how to set up
workflows using CPSWorkflow,” june 2005, avail
able on http://www.cps- project.org/

[WEI] P. von Weitershausen, “Web Component Devel
opment with Zope 3”, Springer, 2005.

[zZ3lab] http://www.z3lab.org/

[ZB] A. Latteier, M. Pelletier, “The Zope Book”, New
Riders, 2001.

http://www.z3lab.org/
http://www.cps-project.org/
http://www.infrae.com/products/silva

