
EDOS: Environment for the Development and Distribution of Open Source

Software

Serge Abiteboul, Xavier Leroy, Boris Vrdoljak Ciarán Bryce
INRIA, France University of Geneva, Switzerland

{serge.abiteboul,xavier.leroy,boris.vrdoljak}@inria.fr ciaran.bryce@unige.ch

Roberto Di Cosmo Klaus R. Dittrich
Paris 7 University, France Zurich University, Switzerland

roberto@dicosmo.org dittrich@ifi.unizh.ch

Stéfane Fermigier Tova Milo, Assaf Sagi, Yotam Shtossel
Nuxeo, France Tel Aviv University, Israel
sf@nuxeo.com milo@cs.tau.ac.il

Stéphane Laurière, Frédéric Lepied, Radu Pop,
Florent Villard

Eleonora Panto
CSP Torino,

Mandrakesoft, France Italy
{slauriere,flepied,rpop,warly}@mandrakesoft.com eleonora.panto@csp.it

Jean-Paul Smets
Nexedi, France

jp@nexedi.com

Abstract – The open-source software community is now

comprised of a very large and growing number of

contributors and users. The GNU/Linux operating system for

instance has an estimated 18 million users worldwide and its

contributing developers can be counted by thousands. The

critical mass of contributors taking part in various open-

source projects has helped to ensure high quality for open

source software. However, despite the achievements of the

open-source software industry, there are issues in the

production of large scale open-source software (OSS) such as

the GNU/Linux operating system that have to be addressed as

the numbers of users, of contributors, and of available

applications grow. EDOS is a European project supported by

IST started October 2004 and ending in 2007, whose

objective is to provide a new generation of methodologies,

theoretical models, technical tools and quality models

specifically tailored to OSS engineering and to software

distribution over the Internet.

I. EDOS PROJECT'S MOTIVATION

To understand the emerging problems related to Linux
distributions engineering, it is necessary to reconsider the
process of producing such software. Each version of a
GNU/Linux operating system is known as a distribution.
The code of a distribution is composed of a large number
of modules, written by contributing developers who are
generally independent and spread out over different
countries. It is the role of the distribution editor to collect
the modules and to integrate them into a new distribution
with respect to their inter-dependencies. This process is
known as packaging. It involves extensive testing and
module correcting. Once the distribution is ready, it is put
at users' disposal through a network of mirrors and peer
servers. Further roles of the distribution editor are to
develop customised versions of a distribution for specific
clients to make versions available to users in an efficient
manner.

Figures related to the case of Mandrakelinux
distribution give an order of magnitude of the whole
process: the code base of Mandrakelinux release contains
7000 object files and over 3000 source files. Along with
information for dependencies and documentation, the total
image distributed in a release is around 20 GBytes. The
total effort required by Mandrakesoft is around 30 person-
years to produce each new distribution release, at a pace of
two new releases per year.

The goal of the EDOS project [1] is to improve two
main aspects of the distribution process: (i) packaging and
testing, and (ii) code distribution. The goal is to
dramatically increase the engineering productivity. To
achieve this goal, EDOS project has the ambition to
innovate all along the production chain of a GNU/Linux
distribution.

II. FORMAL MANAGEMENT OF SOFTWARE
DEPENDENCIES

The effort needed in producing distributions is partly
due to the complexity in managing dependencies between
the large amount of modules, or packages, that make up
the distribution.

The problem is twofold: on one side, editors need to
keep up with recent source code changes by developers,
which is a manual and error-prone task, which often leads
developers and editors to backtrack to cater for interim
changes to modules.

On the other side, a distribution editor must ensure that,
when a set of packages is rubberstamped as a stable
distribution, then it is consistent, and allows successful
installation of each reasonable user selection of packages
out of this set. Even better, the user expects, when moving
from an old version of a distribution to a newer one, to
find an upgrade path that does not disrupt her system.

To tackle this problem, it is necessary to properly
handle dependencies among packages and among features
of packages, like configuration or compilation options.

In cases where dependencies are incorrectly handled,
inconsistent versions of the system are produced which
simply do not work or compile on end-user machines.

The sheer size of a modern distribution makes
automated support and verification of dependencies a
necessity.

EDOS addresses these issues by issuing a formal
component dependency description model, as well as
providing tools to perform static analysis on software
repositories.

III. EDOS TESTING FRAMEWORK AND QUALITY
ASSURANCE PORTAL

The second angle of work in the EDOS project
addresses the testing issue. In the context of OSS, testing is
not only functional unit testing, but also regression testing
(ensuring backward compatibility) as well as coverage
testing (ensuring that the tests are sufficiently complete).

EDOS provides a unified, computer technology-neutral
testing format and leverages this format by setting up an
online testing platform helping contributors to have an
accurate provable view of the system they are building
together, and to report test results. Testing a GNU/Linux
operating system, or indeed any large application built on
OSS, is a time-consuming but essential operation.

The EDOS testing framework allows tests and their
results to be “outsourced” in a way similar to how source
code development is outsourced. New tests can be added
by developers, by the distribution editor as well as by
theoreticians in the same manner that the developers add
new modules. This approach imposes new security
requirements. As the number of developers becomes
larger, it is indeed important to be able to introduce
accountability and to allow developers to securely attach
meta data to source files so that one can trust the test data
associated with the files.

A first version of EDOS testing framework was released
in March 2005 in the form of umitest [2], a file format and
a promising prototype implementation. It implements the
concept of Automated system Integration Based quality
assurance which is a novel way to test the stability of
GNU/Linux distributions by simulating a complete rebuild
of a collection of hosts and running test scripts on each
host to verify functionalities. It is based on the reuse of the
numerous existing unit testing, functional testing and
package testing tools designed by open-source software
communities. umitest provides the initial core engine for
the quality assurance portal which is under
implementation. It is already used in production for
automating unit tests and functional tests of a
Mandrakelinux based Live CD and of an open source
Enterprise Resource Planning system.

Mandrakesoft has developed Testzilla [3], a
collaborative testing framework connected to Bugzilla.
Testzilla defines simple procedures such as: "insert USB
key, wait 5 seconds, check if removable disk is mounted
on a desktop and asks users to run the procedures and
report success or failure to a central database". Testzilla
has been extended to implement experimental automated
testing. A simple XML file defines which packages need to
be installed on the top of a base system and which scripts
should be run on the resulting system. A farm of PCs is

automatically reinstalled thanks to the Mandrakelinux
autoinstall tool. Simple tests are run automatically. Results
are shared in the Testzilla central database, with bugs
directly passed to the common Bugzilla.

Fig. 1 below provides an illustration of the integrated
approach.

Fig. 1.Automation of system integration tests overview

The file dls_cd.qa represents for example a system test
involving one thin client server server (dls), two thin
clients (tc1 and tc2) and one Macintosh computer (mac). It
consists of verifying that each thin client can connect to
the thin client server and that the macintosh can access
files on the thin client server. Tc1, dls and mac are
executed on virtual machines (qemu). Tc2 is executed on a
real PC. The system image of tc1, tc2 and dls are built with
umibuilder. The system image of mac is provided as a read
only disk image. Configuration is achieved on each image
by using a special copyonwrite image and copying some
files generated by a umiboot configuration script.

Once all systems are set up, umitest executes shell
scripts on each host through the console access provided
by the host. Using the console access provided a guarantee
that all parts of the system can be tested, including the boot
part, can be tested automatically. In our approach, complex
testing is achieved by building two virtual hosts: one
which achieves the tests and the other with is the tested
host. For example, one virtual host could run function /
performance tests on another virtual host. Trigerring tests
on the first virtual host does not need more than ability to
access the console an run a script. Results of tests are
published in Testzilla.

EDOS team has provided a complete working prototype
which was tested on real world problems. This prototype is
for now integrated in the umigumi open source project and

can be used immediately.
Based on the current prototype, future directions have

been listed:
1) The current testing framework implementation
should be extended to better support real hosts as in
Testzilla experimentation. This requires combining
umibuilder with autoinstall in Mandrakelinux.

2) Ability to gather test results and associate them to a
bug tracking system is needed, as in Testzilla for
example, or in a collaborative QA portal managed by
workflows.

3) Ability to generate complex scenarii could be added
to the system design so that the creation of a complex
network of hundred hosts can be automated rather than
described.

4) Ability to track code quality in source RPMs though
the addition of a .sqa file format which described code
tests and generates a code metric.

Future extensions are expected with the goal to refactor
the current experimentation in a more general framework:
the Quality Assurance Portal.

IV. NOVEL DISTRIBUTION OF CODE OVER THE
INTERNET

The third and last technical angle in the EDOS project
addresses the issue of the distribution of the new releases
to end-users and developers. A P2P architecture will be
designed, tested and compared to more classical
distributed database architectures based on replicas and
mirroring. The goal is to support a very high quality and
very efficient transmission of code bases from editor to
end-user. A P2P system is one that does not require a
centralised control. It is made up of a relatively large
number of members who both contribute to, and profit
from, membership of the community. In the context of
EDOS, the aim of the P2P system is to store copies of the
software release. The members of the open-source
community are the members of the P2P system, a
sufficient number of members for a P2P system for this
approach to be feasible. The built-in parallelism of a P2P
system and the increase in the number of systems who help
distribute the software will bring numerous positive effects
compared to the current master-slave architecture, and in
particular :

1) Reliability and accessibility: because of the
replication in the P2P system, the process would not
rely on the correct functioning of any particular server
for the distribution to be made.

2) Performance would increase with the number of

peers available to satisfy a given request. In particular,
a user will be able to download code from several peers
in parallel, and will also be able to take advantage of
the proximity of some copy.

3) The time required for a modification to propagate
through to the end-user will be dramatically reduced.

4) Finally, the system will allow peers to customise
some distribution and provide it to selected
communities in push or pull mode.

From the perspective of data sharing and namely code
distribution in a P2P environment, the KadoP system [4,5]
(Knowledge and Data in Peer to Peer) is getting adapted.
KadoP relies on distributed hash tables technology, XML
indexing and query optimisation techniques, and on the
paradigm of ActiveXML [6] documents, to enable the
publication and efficient large-scale querying of XML-
centred content in a P2P environment. KadoP takes
advantage of intentional XML documents to dynamically
compose data-driven web services. ActiveXML is used at
the application level for describing the content of the peers
and the desired exchange of information and software
fragments between peers: in ActiveXML documents, some
of the data is given explicitly and some is given only
intentionally by means of calls to web services.

V. EDOS METRICS

EDOS transverse measurement effort consists in
defining and instrumenting indicators that describe the
production process, the characteristics of the community
involved in the process, the quality of the final product and
the improvements occurring between release cycles.
Inspiration is drawn from existing quality models and
proposed metrics are specifically tailored to OSS
engineering issues.

EDOS methodology leans on the evaluation process
described in the ISO/IEC 14598 standard [7], the process
of definition of quality models described in the ISO/IEC
9126-1 [8], as well as on some elements of the
Goal/Question/Metric method [9].

The methodology consists of the following steps:
1) Identifying the purpose and goals of the
measurement and evaluation

2) Specifying a quality model

3) Defining metrics

4) Establishing a measurement and evaluation plan

5) Data collection - measurement, rating, evaluation

6) Interpretation

In respect to the distribution of OSS for instance, the
purpose of the measurement and evaluation is to compare
different architectures used for the distribution.

In order to be effective, specific and explicitly stated
goals should be specified. Each goal has to be focused on a
certain aspect of the code distribution process. As
suggested by the ISO/IEC 14598 standard, the evaluation
process can be described from different points of view,
such as the point of view of editors, developer users or end
users. Developer users are those who contribute to the
development of the software by testing the current
software version and reporting bugs. The end users are
those who are primarily interested in getting a stable
version of the software.

Following goals have been identified for our purpose:
1) Improvement of the quality of service from the point
of view of developer users

2) Minimisation of the costs from the editor's point of
view.

After explicitly stating the goals, quality models with
corresponding metrics are to be defined using ISO/IEC
9126-1 standard for software product quality as a starting
point and an inspiring example. Still, we have to keep in
mind that EDOS requires specific quality models, since the
characteristics to be measured relate to the code
distribution process, rather than just the software quality
itself. It is fundamental to the preparation of any
evaluation that a quality model reflecting the user's
requirements of the objects to be evaluated is constructed.
Therefore, we will focus to the first goal, and create a
quality model for the quality of service in the code
distribution process from the point of view of the
developer user.

A quality model consists of a set of quality
characteristics, each of which can be decomposed into a
set of quality sub-characteristics. The structure is
hierarchical, and, theoretically of unlimited depth. For the
specified goal, i.e. improvement of the quality of service
from the point of view of the developer user, the EDOS
quality model consists in following criteria hierarchy:

Quality of content

Consistency
Freshness

Edit distance from the latest version
Time distance from the latest version

Ease of use

Time to get a package
Resource availability
Resource size
Transfer speed

Effort to get a package
Finding the resource
Choosing a server

User's cost

Space
CPU usage
Connection time

User's satisfaction

While the meaning of some characteristics is quite
obvious from their name, other characteristics like
consistency and freshness need a more detailed
explanation. Consistency represents the edit distance
between the set of packages on the target computer and the
reference set of packages as it existed at the source server
in the beginning of downloading. Regarding freshness, two
different aspects have to be distinguished: the first one
relates to the edit distance between the distribution version
on a target server (or user's client) and the version on the
main server. The second one deals with the time interval
needed for arrival of a package (or the complete
distribution version) after publishing on the main server. It
is useful to make a distinction between freshness and
consistency since many clients may run old versions of the
OSS distribution. Freshness influences the implementation
of the distribution network. For instance, if few users
actually possess recent packages, then this impedes on the
efficiency of a P2P based architecture.

Next stages in the EDOS metrics effort will consist in
instrumenting further the designed quality model, in
extending it to other aspects of OSS, such as dependencies
measurement and eventually in providing a unified quality
model specifically tailored to the artefacts of open-source
software development, diffusion, usage and maintenance.

VI. POTENTIAL IMPACT ON THE OPEN-SOURCE
COMMUNITIES

The EDOS project is about improving the process
quality in producing OSS, and as a direct result, the quality
of the software delivered to end-users. The whole project
is fully committed to the open-source development and
distribution model. As such, all the software deliverables
as well as the intermediate revisions are freely accessible
to the public. A web page is dedicated to the project, with
links and software to download, including reports and
articles. Beyond the lifetime of this project, the source
code will live the life of regular OSS. Volunteers may pick
up the job and carry on, any time, or embed part of it in
their own projects.

As for the end-user perspective of OSS, two specific
user communities will be involved. They will act as a

validation test-bed to provide feedback to the quality
assurance portal prototype:

1) The Dschola Community [10], composed of
secondary Italian schools, aiming to support the use of
ICT in education. The Dschola community is
concerned with using open-source in schools and
promote it through different actions, like workshops,
training and technical support for teachers.

2) The RIUSA Project devoted to old personal
computers recycling using open-source software.

VII. REFERENCES

[1] http://www.edos-project.org

[2] http://cvs.erp5.org/cgi-bin/viewcvs.cgi/umigumi/

[3] http://qa.mandrakesoft.com/twiki/bin/view/Main/TestZilla

[4] http://www-rocq.inria.fr/gemo/Gemo/Projects/KadoP/

[5] KadoP: Serge Abiteboul, Ioana Manolescu, Nicoleta
Preda. "Constructing and querying peer-to-peer

warehouses of XML resources". International

"Semantic Web and Databases" workshop (in

cooperation with the VLDB conference) Toronto,
Canada, August 2004 (ps)

[6] http://activexml.net/
http://forge.objectweb.org/projects/activexml/

[7] ISO/IEC 14598-1:1999 Information technology -

Software project evaluation - Part 1: General

Overview, Geneva, International Organization for
Standardization and International Electrotechnical
Commission, 1999.

[8] ISO/IEC 9126-1:2001 Software engineering - product

quality - Part 1: Quality model, Geneva, International
Organization for Standardization and International
Electrotechnical Commission, 2001

[9] R.Solingen, E.Berghout: The Goal/Question/Metric

Method, McGraw-Hill, 1999.

[10] E. Pantò, E. Lavagno, Dschola - A regional school

network, TIEC Proceedings, 2002
http://web.udg.es/tiec/posters/cp15.pdf

